ADIKAVI NANNAYA UNIVERSITY:: RAJAHMAHENDRAVARAM B.Sc Physics Svllabus (w.e.f:2020-21 A.Y)

B Sc	Semester V (Skill Enhancement Course -Elective)	Credits: 4
Course: 6B	Low Temperature Physics & Refrigeration	Hrs/Wk: 4

Learning Outcomes: Students after successful completion of the course will be able to

- 1. Identify various methods and techniques used to produce low temperatures in the Laboratory.
- 2. Acquire a critical knowledge on refrigeration and air conditioning.
- 3. Demonstrate skills of Refrigerators through hands on experience and learns about refrigeration components and their accessories.
- 4. Understand the classification, properties of refrigerants and their effects on environment.
- 5. Comprehend the applications of Low Temperature Physics and refrigeration.

Syllabus: (Total Hours: 90 including Teaching, Lab, Field Training, Unit tests etc.)

UNIT I: PRODUCTION OF LOW TEMPERATURE

Production of low temperatures-Introduction, Freezing mixtures, Joule-Thomson effect, Regenerative cooling, Different methods of liquefaction of gases, liquefaction of air, Production of liquid hydrogen and nitrogen, Adiabatic demagnetization, Properties of materials at low temperatures, Superconductivity

UNIT II: MEASUREMENT OF LOW TEMPERATURE

Gas thermometer and its correction and calibration, Secondary thermometers, resistance thermometers, thermocouples, Vapour pressure thermometers, Magnetic thermometers, Advantages and drawbacks of each type of thermometer.

UNIT III: PRINCIPLES OF REFRIGERATION

Introduction to Refrigeration- Natural and artificial refrigeration, Stages of refrigeration, Types of refrigeration - Vapor compression and vapor absorption refrigeration systems, Refrigeration cycle and explanation with a block diagram, Introductory ideas on air- conditioning.

Refrigerants-Introduction, Ideal refrigerant, Properties of refrigerant, Classification of refrigerants, commonly used refrigerants, Eco-friendly refrigerants

UNIT IV: COMPONENTS OF REFIGERATOR

Refrigerator and its working, Block diagram, Coefficient of Performance (COP), Tons of refrigeration (TR) and Energy Efficiency Ratio (EER), Refrigerator components: Types of compressors, evaporators and condensers and their functional aspects, defrosting in a refrigerator, Refrigerant leakage and detection

UNIT V: APPLICATIONS OF LOW TEMPERATURE & REFRIGERATION (10 hrs.)

Applications of Low temperatures: Preservation of biological material, Food freezing, liquid nitrogen and liquid hydrogen in medical field, Superconducting magnets in MRI- Tissue ablation (cryosurgery) - Cryogenic rocket propulsion system.

Applications of refrigeration: Domestic refrigerators, Water coolers, Cold storages, Ice plants, Food preservation methods, Chemical and Process industries, Cold treatment of metals, Construction field, Desalination of water, Data centers.

(10 hrs)

(10 hrs)

(10 hrs)

(10 hrs)